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Background

This third annual report reviews the research produced by our group during

the academic year 1982-1983, in the pursuit of a purely theoretical basis for

turbulent flow phenomena and for performing engineering calculations of turbulent

transport parameters. The objective of our work during the third year is better

* understood if one takes a brief look at our objectives and accomplishments during

the first two years.

Our group's interest in the fundamentals of turbulent flow was sparked by

the idea that any large-Reynolds-number stream (i.e., any stream that is relatively

inviscid) possesses a longitudinal length scale (A B) which is proportional to the

stream's transversal length scale (D). This longitudinal length scale is the

widely observed meander wavelength of turbulent streams (jets, wakes, shear layers,

plumes). The suggestion that "A B/D - constant" is a property of all inviscid

streams was published in 1981 as the end-result of the buckling theory of inviscid

flow columns [1,2]. Whether or not the scaling law recommended by the buckling

theory is correct remained to be established on the basis of old and new experi-

ments. One issue we recognized from the start is that any theory that predicts

a previously unknown property of turbulent flow deserves to be treated with serious

attention, simply because turbulence science as we have it is dominated by

empiricism. For this reason, any legitimate advance on the theoretical front is

potentially capable of reducing significantly man's reliance on empiricism in dealing

with engineering calculations of turbulent flow.

It is with this philosophical outlook that we devoted a good part of the

last three years to the task of verifying the validity of the AB - D scaling law

of inviscid flow. During the first year we focused on a series of laboratory

experiments designed to visualize the meandering or the buckling of high-Reynolds-

number flows and to measure the AB/D constant. Another, much more rewarding phase
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of our experimental effort was to sift through the fluid mechanics literature

and to re-examine classical experimental results in light of our suspicion that

beneath all of them resides the XB - D property. We documented our experimental

findings individually in the peer-refereed literature (3-5] and in review form

in chapter 4 of my first book [6]. All the experiments examined by us - new and

old - validate the buckling theory prediction that a longitudinal length scale

exists, and that this length scale is proportional to the transversal length

scale of the stream under consideration-. It is worth pointing out that since its

publication in 1981 the buckling theory has triggered at least one other experi-

mental study (7], whose conclusions relative to the validity of the XB -

scaling law is in perfect agreement with ours.

During the second year of this research program we turned our attention to

analytical work that invokes the AB ' D property in order to predict some of

the more frequently used features of turbulent flow. These analytical developments

ranged from predicting the constant-angle growth (i.e., the triangular or conical

shape) of all turbulent mixing regions, to calculating the viscous sublayer

thickness in turbulent boundary layer flow. Samples of this analytical work are

presented in the peer-refereed literature [6,8,9] and throughout the "turbulent

flows" part of my course in convection heat transfer [10]. In all cases, the

XB A D property is used to derive analytically classical facts known empirically:

this new property is used to partially replace empiricism with theory in our

own comprehension of turbulence.

During the third year of sponsored research, 1982-1983, we could have

continued with more buckling flow experiments and with more analyses of

turbulent flow, and our success and productivity would have been assured. We

chose not to do this (two years of intensive work of this kind were enough to

satisfy our curiosity), instead, we devoted the third year to investigating the

XV. 
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possible relationship between buckling theory and hydrodynamic stability theory.

We were able to show that the hydrodynamic stability theory of inviscid flow and

the buckling theory of inviscid flow are in fact in agreement with regard to the

existence of the XB - D scaling law: as shown in the next section, the agree-

ment between the two theories is easy to establish once "one knows what to look

for" in the volume of information generated by hydrodynamic stability analyses,

(i.e., once one knows from buckling theory that a certain proportionality of

scales might have been overlooked).

Hydrodynamic stability theory and
buckling theory vis-avis transition

A review of analytical results of linear stability analyses of inviscid

flows (Table 1) shows that any inviscid stream of thickness Dis unstable to

disturbances whose longitudinal wavelength exceeds a certain.multiple of D.

For example, a two-dimensional inviscid jet of triangular profile is unstable

to wavelengths in excess of 1.714 D. Beginning with Rayleigh's paper [11],

much has been made in the stability literature of the maximum exhibited by the

growth rate of the disturbance. More interesting, however, is the "coincidence"

that the neutral wavelength 1.714 D is only 5 percent smaller than the buckling

wavelength scale of a two-dimensional stream ( V D = 1.81 D; see Refs. [1,6]).

This coincidence seems to be insensitive to the actual shape of the U(y) profile

chosen for analysis. For example, in a stack of D-thick counterflow jets of

sinusoidal profile (u - U sin wy/D) the neutral wavelength is 2 D, which is
0

only 10 percent greater than the buckling length scale ( 7//-3- ) D. The same

scaling between flow thickness and neutral wavelength is revealed by the

stability analysis of other finite-thickness flows (Table 1).

The proportionality of length scales identified in Table 1 tells us that

during transition a stream can fluctuate relative to its ambient with a period
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(a) Tee jet A sa " 1.714 D

U

(a) shea y ( 0e-a - 4.910

(e tatv----r-------- at * 0 n * - 0 f)

Table 1. Minlaun vavelength for Instability in inviscid flow
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of order A/(U 0 /2), where X is the disturbance wavelength and U0 the scale of

the relative velocity between stream and ambient. And since for instability X

must be greater than a length nearly identical to the buckling wavelength

A B [1,61, the stream fluctuation time scale will be equal to or greater than

the buckling time

tfluctuation t U = (1)

Since XB ' D, the fluctuation period exceeds a minimum value that is proportional

to D. The same conclusion is shown graphically in Fig. 1: The domain of

possible inviscid instability is situated to the right of the t ~ D line

represented by eq. (1).

Since "invlscidity" is a flow property, not a fluid property , the domain

of possible inviscid instability must also be situated to the left of the t - D2

parabola on Fig. 1. The t - D2 curve has its base in the argument that any stream

(UoD) started impulsively relative to a stationary ambient becomes viscid during

a time given by the scale of transversal viscous communication over a distance

D/2 [1,6],

tv l6v (2)

Thus, the disturbed stream fluctuates as an inviscid stream if

tfluctuation  ' tv (3)

all fluids have a measurable viscosity, V.
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Combining eqs. (1) - (13), we learn that the transition is possible

as long as

t B <: t fluctuation -- v(4

Figure I suggests that in any stream-like flow the leading section of the

flow is laminar, and that the transition is possible for the first time when

the buckling number reaches 0(1)

t
t- (5)tB

In terms of a local Reynolds number based on local transversal length scale,

UoD/v , the NB - 1 criterion is written as

U 0oD 1 2

0 .102. (6)
V

The transition criterion (5,6), derived here based on the scaling trend

discovered in some of the results of inviscid stability analyses (Table 1),

is identical to the criterion suggested originally by the buckling theory of

inviscid streams. Most recently, we tested this criterion against experiments

on transition in round laminar plumes [12] and in natural convection boundary

layers (wall jets) near vertical walls heated at uniform temperature or uniform

heat flux [131. These experiments are described next only in "abstract" form,

as they have both been published in the peer-refereed literature

reprints can be obtained by writing to Adrian Bejan, University of Colorado,
Campus Box 427, Mechanical Engineering Department, Boulder, Colorado 80309
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Abstract

This paper reports a theoretical and experimetnal study of the fundamental

mechanism responsible for transition in natural convection plume flow. Theor-

etically, it is argued that the transition occurs when the time of viscous

penetration normal to the plume becomes comparable with the minimum time period

with which the plume can fluctuate as an unstable inviscid stream. It is also

argued that at transition the plume wavelength must always scale with the local

plume diameter. The experimental part of the study focused on transition in the

axisymmetric air plume above a point heat source. Smoke visualized of the

plume shape at transition led to extensive observations that support strongly

the transition mechanism proposed theoretically. The transitional plume is seen

to meander in plane (two-dimensionally) and with a wavelength which scales with

the plume diameter. If excited externally by many such wavelengths, the plume

has the property to select the natural wavelength proposed theoretically. The

equivalence between the present transition mechanism and the transition predicted

by the buckling theory is discussed.
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A. Bejan and G. R. Cunnington, "Theoretical Considerations of Transition to

Turbulence in Natural Convection Near a Vertical Wall," Int. J. Heat Fluid

Flow, Vol. 4, 1983, pp. 131-139.
V".

Abstract

Hydrodynamic stability analysis of an inviscid wall jet shows that instability

is possible above a characteristic disturbance wavelength which is proportional to

the jet thickness. This scaling is the basis for an argument that transition

occurs when the fluctuating time period of the unstable (inviscid) wall jet is of

the same order as the viscous diffusion time noraml to the jet. The transition must

occur when the Jet Reynolds number is of the order of 102. Published observations

of transition along a heated vertical wall are reviewed in order to test the validity

of the proposed scaling argument. Specifically, numerous observations on buoyant

jets near isothermal walls, near constant-heat-flux walls, and in enclosures with

vertical isothermal walls are shown to support the validity of the transition

mechanism proposed.

.1.
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